If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-30-200=0
We add all the numbers together, and all the variables
t^2-230=0
a = 1; b = 0; c = -230;
Δ = b2-4ac
Δ = 02-4·1·(-230)
Δ = 920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{920}=\sqrt{4*230}=\sqrt{4}*\sqrt{230}=2\sqrt{230}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{230}}{2*1}=\frac{0-2\sqrt{230}}{2} =-\frac{2\sqrt{230}}{2} =-\sqrt{230} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{230}}{2*1}=\frac{0+2\sqrt{230}}{2} =\frac{2\sqrt{230}}{2} =\sqrt{230} $
| 1/5s+125=225 | | -q/8=40 | | 5s-7s=-35 | | x+3/4=10 | | 72-4a=6a+2 | | -j/4=4 | | 2(6x+1)=2(4+5/2x) | | 0,78x=30 | | 64-7k=7k+8 | | 4-6=2x-10 | | 4u-13=23 | | x/2+7=2(x−7 | | n/3=-27 | | 2x+0,5x+0,25x=99 | | 7x+7=62 | | 19/5-4^x=4/5 | | -x+162=50 | | x+2x+0.5x+0.25x=99 | | 69-7h=32 | | 4(0,5-0,25)=6+f | | -9x+4=2(1-3x) | | x*0.25+x=10 | | 92=215-x | | x+2/5=20/1 | | Y=-1/2x^2-4 | | 6y+4=12y | | 44=2(3x5) | | (3x+7)=(5x+17) | | -2(x-6)=12 | | r+13/3=8 | | 1.3=0.7+y | | 7(-3x-4)=35 |